| Jake Antaya |
|---|
| (Penalties: 0) | | 1 | 41.418 [6] | | 2 | 34.453 [8] | | 3 | 32.911 [6] | | 4 | 41.08 [6] | | 5 | 33.134 [7] | | 6 | 33.635 [7] | | 7 | 33.448 [7] | | 8 | 34.764 [7] | | 9 | 34.419 [7] | | 10 | |
| | Aiden Elliott |
|---|
| (Penalties: 0) | | 1 | 36.971 [1] | | 2 | 30.143 [1] | | 3 | 29.917 [1] | | 4 | 30.113 [1] | | 5 | 39.309 [1] | | 6 | 31.098 [2] | | 7 | 30.859 [2] | | 8 | 32.631 [2] | | 9 | 34.567 [2] | | 10 | 30.786 [2] |
| | Will Popma |
|---|
| (Penalties: 0) | | 1 | 37.244 [2] | | 2 | 30.167 [2] | | 3 | 30.085 [2] | | 4 | 30.152 [2] | | 5 | 35.518 [2] | | 6 | 29.709 [1] | | 7 | 29.826 [1] | | 8 | 31.849 [1] | | 9 | 29.909 [1] | | 10 | 31.707 [1] |
| | Mason Rojek |
|---|
| (Penalties: 0) | | 1 | 39.416 [4] | | 2 | 33.869 [6] | | 3 | 36.117 [7] | | 4 | 36.421 [7] | | 5 | 32.372 [6] | | 6 | 31.821 [6] | | 7 | 31.99 [6] | | 8 | 31.147 [6] | | 9 | 31.811 [6] | | 10 | 33.218 [6] |
| | Camden Smith |
|---|
| (Penalties: 0) | | 1 | 39.015 [3] | | 2 | 31.548 [3] | | 3 | 31.085 [3] | | 4 | 31.195 [3] | | 5 | 35.847 [5] | | 6 | 31.433 [5] | | 7 | 31.086 [5] | | 8 | 31.262 [5] | | 9 | 30.956 [5] | | 10 | 30.479 [4] |
| | Domanater19 |
|---|
| (Penalties: 0) | | 1 | 40.458 [5] | | 2 | 31.924 [4] | | 3 | 32.912 [5] | | 4 | 37.877 [5] | | 5 | 30.63 [4] | | 6 | 30.159 [3] | | 7 | 31.421 [3] | | 8 | 33.455 [3] | | 9 | 30.428 [3] | | 10 | 30.625 [3] |
| | Colt ludlam |
|---|
| (Penalties: 0) | | 1 | 41.43 [7] | | 2 | 32.184 [5] | | 3 | 31.107 [4] | | 4 | 35.972 [4] | | 5 | 30.51 [3] | | 6 | 31.018 [4] | | 7 | 33.145 [4] | | 8 | 31.37 [4] | | 9 | 31.182 [4] | | 10 | 31.567 [5] |
| | Jp Popma |
|---|
| (Penalties: 0) | | 1 | 41.616 [8] | | 2 | 33.977 [7] | | 3 | 33.894 [8] | | 4 | 39.848 [8] | | 5 | 34.402 [8] | | 6 | 34.97 [8] | | 7 | 34.553 [8] | | 8 | 36.258 [8] | | 9 | 33.852 [8] | | 10 | |
| | David Insignares |
|---|
| (Penalties: 0) | | 1 | 44.026 [9] | | 2 | 37.521 [9] | | 3 | 37.53 [9] | | 4 | 42.849 [9] | | 5 | 37.78 [9] | | 6 | 36.141 [9] | | 7 | 35.965 [9] | | 8 | 37.584 [9] | | 9 | 37.92 [9] | | 10 | |
|